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Lagrangian statistics of fluid-particle velocity and acceleration conditioned on
fluctuations of dissipation, enstrophy and pseudo-dissipation representing different
characteristics of local relative motion are extracted from a direct numerical
simulation database of stationary (forced) homogeneous isotropic turbulence. The grid
resolution in the simulations is up to 20483, and the Taylor-scale Reynolds number
ranges from about 40 to 650, where characteristics of small-scale intermittency in
the Eulerian flow field are well developed. A key joint statistic of the conditioning
variables is the dissipation–enstrophy cross-correlation, which is asymmetric, but
becomes less so at high Reynolds number. Conditional velocity autocorrelations are
consistent with rapid changes in the velocity of fluid particles moving in regions
of large velocity gradients. Examination of statistics conditioned upon enstrophy,
especially in a local coordinate frame moving with the vorticity vector, and of the
centripetal acceleration suggests the presence of vortex-trapping effects which persist
for several Kolmogorov time scales. Further results on acceleration statistics and
joint velocity–acceleration autocorrelations are also presented to help characterize in
detail the properties of a joint stochastic process of velocity, acceleration and the
pseudo-dissipation. Together with recent work on Eulerian conditional acceleration
and Reynolds-number dependence of basic Lagrangian quantities, the present results
are directly useful for the development of a new stochastic model formulated to
account for intermittency and Reynolds-number effects as described in detail in a
companion paper.

1. Introduction
The Lagrangian approach of following the motions of infinitesimal fluid elements

has long been recognized (Taylor 1921; Monin & Yaglom 1975) as central in
descriptions of turbulent transport and dispersion. It is clear that the spatial structure
of the turbulence plays an important role: namely, the large-scale motions determine
integral time scales and particle displacement, whereas local relative motion in the
form of turbulent straining and rotation determines changes of fluid-particle velocity
with time and between different particles which diffuse relative to each other. In
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particular, fluid particles moving in a region of large velocity gradients can be
expected to experience rapid changes in velocity, i.e. a large acceleration, whose
magnitude and direction may depend on whether high strain rate or high rotation
rate is involved. One effective strategy for investigating the effects of local flow
structure is thus to sample Lagrangian trajectories conditionally, according to certain
measures of the intensity of local strain, rotation, or velocity gradients in general.
This approach has been used with success (Yeung et al. 2006a) in an Eulerian
frame where we study acceleration as the material derivative of velocity according
to the Navier–Stokes equations. Consideration of intermittency via a model for the
Lagrangian acceleration (Sawford 1991; Pope 2002; Reynolds 2003a) is important for
incorporating Reynolds-number dependence in stochastic modelling. Recent interest
in various aspects of the acceleration (e.g. LaPorta et al. 2001; Sawford et al. 2003;
Biferale et al. 2004) also provides further motivation for examining the effects of
small-scale intermittency on statistics of Lagrangian fluid-particle motion.

Our main purpose in this paper is to present a detailed numerical investigation
of the effects of local flow structure over a substantial Reynolds-number range on
the Lagrangian statistics of velocity and acceleration. The central theme is to advance
fundamental understanding while providing data for model development. The nature
of local relative motion in the flow may be characterized by fluctuations of the
energy dissipation rate (ε ≡ 2νsij sij ), enstrophy (ζ ≡ νωiωi), or pseudo-dissipation
(ϕ ≡ ν(∂ui/∂xj )

2), where in these definitions ν, sij , ωi and ∂ui/∂xj denote kinematic vis-
cosity, strain rate, vorticity and the velocity gradient tensor, respectively. For example,
the autocorrelation between fluid particle velocity at times t and t+τ (where τ is a time
lag) conditioned upon the value of energy dissipation at the particle position at time t

gives information on the effects of local strain rate on the Lagrangian statistics of the
flow. Likewise, if there is a tendency for fluid particles to be trapped in regions of high
vorticity (Biferale et al. 2005; Bec et al. 2006; Xu et al. 2006) this should be quantifi-
able via the sensitivity of Lagrangian statistics to enstrophy as a conditioning variable.

Because local relative motion is inherently dominated by the small scales, classical
concepts of small-scale universality suggest that forced stationary isotropic turbulence
is, although idealized, an appropriate flow configuration for the present study. A
further advantage is that this flow is most readily amenable to the use of advanced
computing power to obtain data at the highest Reynolds number possible. It should
be noted that conditional statistics of the types mentioned above require accurate data
at a very high level of detail – essentially all coordinate components of velocity and
velocity gradient fluctuations along a large number of irregular particle trajectories.
Despite advances in Lagrangian measurements (Voth, Satyanarayan & Bodenschatz
1998; Mordant et al. 2001; Berg et al. 2006; Guala et al. 2006; Ouellette, Xu &
Bodenschatz 2006), the data we require are, at present, best obtained from direct
numerical simulation (DNS) with a high-order interpolation scheme (Yeung & Pope
1988) which can provide the time history of many flow variables along the particle
trajectories (Yeung 2002). Lagrangian statistics of dissipation, enstrophy and pseudo-
dissipation from DNS have been reported in Yeung & Pope (1989), and Yeung et al.
(2006b). However, conditional Lagrangian statistics with these quantities used as the
conditioning variables appear to be new to the literature, with the possible exception
of Luthi, Tsinober & Kinzelbach (2005) who used wide sampling bins in experiments
at low Reynolds number. Conditional sampling based on these highly intermittent
variables is more challenging than that based on the velocity previously considered
by other authors (Sawford et al. 2003; Mordant, Crawford & Bodenschatz 2004;
Crawford, Mordant & Bodenschatz 2005).
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N 64 128 256 512 1024 2048
Rλ 43 86 140 235 393 648
ν 0.025 0.0071 0.0028 0.0011 0.000437 0.0001732
〈ε〉 1.31 1.17 1.17 1.20 1.26 1.10
L1/η 24 52 98 201 450 732
TL/τη 5.4 8.6 13.1 19.8 31.1 43.8
kmaxη 1.77 1.41 1.41 1.40 1.37 1.44
T/TL 32.3 36.3 15.5 10.7 10.0 6.0
	t/τη 0.0432 0.0328 0.0191 0.0166 0.0101 0.00066
h/τη 0.217 0.193 0.184 0.198 0.215 0.243

Table 1. Major parameters of the numerical simulation database.

The numerical simulation database analysed in this paper is the same as that
reported in Yeung et al. (2006b), at grid resolution up to 20483 and Taylor-scale
Reynolds number (Rλ) up to about 650. Table 1 gives some numerical parameters,
including the range of scales in length and time in terms of longitudinal integral
length scale (L1), Lagrangian velocity integral time scale (TL), Kolmogorov scales of
length and time (η, τη), resolution of the small scales in terms of highest wavenumber

resolved (kmax =
√

2N/3 on an N3 grid), time duration of the simulation (T ) compared
with TL, and average DNS time step (	t) as well as Lagrangian sampling time interval
(h) compared with τη. The largest (20483) simulation was performed at Pittsburgh
Supercomputing Center. As discussed in Yeung et al. (2006b), all of the simulations
listed have the same forcing parameters, but different viscosities. In all cases, we
maintain a constant Courant number (close to 0.6) which makes 	t small compared
to τη at increasing N and Rλ, while fluid particle properties are saved at time intervals
h = O(1/4τη) or less for analysis. The simulation at highest grid resolution (20483) is
shorter in terms of TL because of CPU expense, but still adequate, especially since
our present focus is on small-scale quantities that have relatively short time scales.

An important motivation in DNS is to contribute to model development as well as
physical understanding. In particular, the numerical study reported in this paper is,
in part, guided by a need for specific test results for a new stochastic model described
in detail in an accompanying paper (Lamorgese et al. 2007). The proposed model
represents conceptual advancements over previous work (Sawford 1991; Reynolds
2003b) in its treatment of intermittency, which is implemented by incorporating a
non-Gaussian model for the acceleration conditioned upon fluctuations of the pseudo-
dissipation rate (ϕ). Use of ϕ instead of the energy dissipation rate (ε) as a descriptor of
intermittency is appropriate here because it naturally includes the effects of both local
strain and rotation, and because it has been shown in DNS (Yeung et al. 2006a) to be
closer to log-normal. In addition, the acceleration conditioned on ϕ (rather than on ε

or ζ ) has the smallest variance and is represented well by a simple (‘cubic-Gaussian’)
probability density function (PDF). The model of Lamorgese et al. (2007) consists of
coupled stochastic differential equations (SDEs) for pseudo-dissipation, acceleration
and velocity. Specifically, and consistent with the above observations: lnϕ is modelled
by an Ornstein–Uhlenbeck process; the SDE for acceleration yields a conditionally
cubic-Gaussian distribution; and the (degenerate) SDE for velocity amounts to the
exact relation of velocity being the integral of acceleration. Quantities crucial to such
a model description therefore include one- and two-time statistics of the velocity and
acceleration, taken separately or jointly, conditioned upon the pseudo-dissipation. For
example, conditional autocorrelations of both velocity and acceleration presented in
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this paper have been used for model development and testing by Lamorgese et al.
(2007). Likewise, conditional and unconditional structure functions of the velocity are
reported in Lamorgese et al. (2007) and used to show that the new model achieves
better agreement with DNS over previous work by Reynolds (2003b) which assumed
a conditionally Gaussian acceleration given the energy dissipation rate.

In § 2, we give a brief summary of the numerical methods used to perform the
simulation and analyse the data, including specific issues that arise in the processing
of auto- and cross-correlation functions conditioned on either ε, ζ or ϕ. Current
results on the autocorrelations of these three conditioning variables have been given
in Yeung et al. (2006b), together with basic information on the velocity structure
function and frequency spectrum interpreted in terms of classical Kolmogorov scaling.
Some additional background results on the joint statistics of these variables are first
given in § 3. Results on conditional statistics are given in §§ 4–6, for velocity and
acceleration considered separately, and then jointly as a pair of random variables. In
§ 4, we observe that, when the Reynolds number is low, the velocity autocorrelation
conditioned on high enstrophy has some special features which can be interpreted
as evidence of fluid particles trapped in regions of high vorticity (Biferale et al.
2005). A decomposition of the velocity vector in local coordinate axes parallel and
perpendicular to the vorticity vector is used to help explain this effect, which becomes
weaker at high Reynolds number. In § 5, we present acceleration–dissipation cross-
correlations followed by acceleration autocorrelations conditioned on the dissipation
variables. In § 6, we present both unconditional and conditional versions of the cross-
correlation between velocity and acceleration. We conclude this paper in § 7 with a
summary of the DNS results and and their role in stochastic modelling.

2. Numerical approach
The basic elements of our numerical simulation approach are as described in several

previous publications (e.g. Yeung 2001; Yeung et al. 2006b): namely, the well-known
Fourier pseudo-spectral approach of Rogallo (1981) coupled with the particle-tracking
algorithm of Yeung & Pope (1988). Stochastic forcing at the large scales (Eswaran
& Pope 1988) is used to maintain a statistically stationary state and allow higher
Reynolds numbers to be sustained on a given grid. Cubic spline interpolation, which is
fourth-order accurate and twice-differentiable, is used to calculate velocity and velocity
gradients (hence the quantities ε, ζ , ϕ) along the trajectories of a large number of fluid
particles with randomly distributed initial positions. The smoothness properties of
cubic splines also facilitate the calculation of acceleration by a simple finite difference
in time from velocity time series saved at intervals (h) of order 1/4 of a Kolmogorov
time-scale (τη) or less apart. Theoretical arguments based on intermittency (Yakhot
& Sreenivasan 2005) have suggested that accurate results for acceleration statistics
(especially the higher-order moments) may require the small scales to be resolved
to a degree beyond prevailing practices in DNS. However, in Yeung et al. (2006a)
we show that these effects are weaker for statistics of acceleration conditioned upon
fluctuations of ε, ζ or ϕ since the conditional variables are inherently less intermittent.

Knowledge of conditional averages in turbulence is valuable because they provide
a quantifiable measure of the statistical coupling between fluctuations in one flow
variable and another, and because they are needed as unclosed terms in PDF
modelling where a Lagrangian viewpoint is frequently adopted (Pope 1985). However,
most available DNS data on conditional statistics in the literature (e.g. Kronenburg
& Bilger 1997; Vedula, Yeung & Fox 2001) are Eulerian, with all variables involved



Lagrangian conditional statistics 403

taken at the same grid points. In the Lagrangian frame, we have a choice of whether to
take the conditioning variable at, say, the beginning or the end of a time interval from
t to t +τ . However, conditioning on the ‘present’ (time t) is more natural for stochastic
modelling aimed at predicting the future (time t + τ ). With superscript + denoting
Lagrangian quantities and u+(t) being a component of the fluid particle velocity, we
can define the conditional velocity autocorrelation given a random variable Z+(t)
(which may be ε, ζ or ϕ) as

ρu(τ |Z) ≡ 〈u+(t)u+(t + τ )|Z+(t) = Z〉
〈(u+(t))2|Z+(t) = Z〉 , (2.1)

where Z is the corresponding sample-space variable for Z+(t). Because of stationarity,
both the numerator and denominator above can be averaged over time t within
the entire period of the simulation. Computation of the numerator requires both
conditional sampling for each particle over the distribution of Z+(t) divided into
suitable histogram bins, and the averaging over many intervals of size τ within a
finite overall simulation period (T ). From (2.1), it can be seen that ρu(τ |Z) equals
unity at τ = 0 (as for its unconditional counterpart), but (because of the normalization
chosen) is not strictly bounded between −1 and 1. A negative τ corresponds to
conditioning on Z+(t + τ ) at the end of the interval [t, t + τ ]. In most instances, we
choose histogram bins for Z+(t) (which may be ε, ζ or ϕ) based on their logarithms,
which are approximately Gaussian (Yeung et al. 2006a).

Conditioning on enstrophy (in the manner of (2.1)) provides information on the
Lagrangian history of fluid particles moving in regions of high vorticity, which
is relevant to the issue of fluid particles trapped in vortical regions in turbulent
flow (Biferale et al. 2005). Clearly, the statistics of velocity components along and
perpendicular to the axis of a strong vortex are expected to differ. To characterize
these effects, it is useful to project the velocity vector onto a system of local coordinate
axes consisting of a unit vector along the direction of local vorticity, and two unit
vectors which rotate in the orthogonal plane according to the local rotation-rate
tensor. Specifically, let ξ (t), p(t), q(t) be mutually orthogonal unit vectors, with
ξ (t) = ω(t)/|ω(t)|. We allow p(t) and q(t) to rotate according to the fluctuating rate-
of-rotation tensor R(t), but require them to remain orthogonal to ξ (t) (and to each
other). These conditions are met if we let p(t) and q(t) evolve by the pair of (identical)
equations

d p
dt

= R p − ξ ( p · dξ/dt),
dq
dt

= R q − ξ (q · dξ/dt). (2.2)

From these equations it can be readily shown that if ξ (t), p(t), q(t) are initially
orthogonal, then the time derivatives of dot products between any two of them
vanish; thus they should remain mutually orthogonal at all times. Initial conditions
are generated by using a Craya decomposition: e.g. let e(1) be the unit vector along
the x1-axis in a fixed coordinate system, then defining

p(0) =
(
ξ (0) × e(1)

)/∣∣ξ (0) × e(1)
∣∣, q(0) = (ξ (0) × p(0))/|ξ (0) × p(0)|. (2.3)

For numerical integration from time level tn to tn+1 = tn + h we use a second-order
predictor–corrector scheme similar to that for time advancement in the DNS code,
with the time derivative dξ/dt computed from the Lagrangian time series of vorticity
using second-order central differences. In practice, the interval h can only be as small
as the time interval at which we collect Lagrangian time series in the simulations:
usually this is about 1/4 of τη, which may not be small enough to capture rapid



404 P. K. Yeung, S. B. Pope, E. A. Kurth and A. G. Lamorgese

variations of the change of vorticity vector orientation. To correct for discretization
errors due to the finiteness of h we enforce orthogonality at each time level using the
projection tensor based on ξ (tn+1): i.e. the numerical solution p̂ to (2.2) at time tn+1 is
converted to pi(tn+1) = Pij (ξ (tn+1))pj , where Pij (ξ ) = δij −ξiξj . The effectiveness of this
correction procedure has been checked by forming the PDF of ξ · p before and after
the correction at each time step, and by comparing results with a 643 simulation in
which we used a value of h as small as 1/16 of τη. We refer to the velocity component
along the vorticity vector as u‖ whereas the two components along p(t) and q(t) are
statistically equivalent and referred to as u⊥.

Lagrangian properties of each of the variables ε, ζ and ϕ taken separately provide
important background information for interpreting velocity and acceleration statistics
conditioned on these quantities. Results on ε, ζ and ϕ taken separately have been
presented in Yeung et al. (2006b). These variables are found to have approximately
exponential autocorrelations with integral time scales which decrease with respect to
TL but increase relative to τη as the Reynolds number increases. In contrast to results
by Yeung & Pope (1989), at high Reynolds number, dissipation and enstrophy are
found to have similar time scales whereas the logarithms of ε, ζ and ϕ all have longer
time scales that appear to follow TL. The results also suggest that modelling as a
diffusion process with Gaussian statistics is more appropriate for ln ϕ than for ln ε.

In this paper, we include cross-correlations between pairs of random variables. As
a generic definition for two Lagrangian variables X and Y of mean values µX , µY

and variances Var(X), Var(Y ), we write

ρXY (τ ) ≡ 〈(X+(t) − µX)((Y +(t + τ ) − µY )〉
{Var(X)Var(Y )}1/2

, (2.4)

where the denominator is averaged over the entire time record of each simulation.
The variable X+(t) is considered to be leading in time if τ > 0, but lagging if τ < 0.
Although stationarity requires ρXY (−τ ) = ρYX(τ ), this relation does not carry over to
the conditional cross-correlation given another variable Z at time t , i.e. in general
ρXY (−τ |Z) (defined by replacing τ by −τ in Eq. 2.4) is not the same as ρYX(τ |Z). At
τ = 0, the single-time correlation coefficient is recovered, which is also written simply
as ρ(X, Y ).

3. Dissipation–enstrophy cross-correlations
Although in most studies in the literature (e.g. Yeung & Pope 1989; Chen,

Sreenivasan & Nelkin 1997; Zhou & Antonia 2000) enstrophy is found to be more
intermittent than the dissipation, there is considerable interest in whether their
statistics may scale similarly at high Reynolds number (Sreenivasan & Antonia
1997; Nelkin 1999). From a Lagrangian perspective, diagnostics useful for this issue
include the autocorrelations of these quantities (Yeung et al. 2006b), and their cross-
correlations (Yeung & Pope 1989), shown in figure 1 for six simulations with
Rλ ≈ 40 − 650 (as in table 1) and time lag normalized by TL. Because both of these
variables evolve on time scales shorter than TL, as the Reynolds number increases all
six curves shown become narrower under this scaling. A more significant observation
is the asymmetry of stronger correlation for τ > 0. Physically, this suggests fluid
particles are more likely to experience high dissipation followed by high enstrophy
versus high enstrophy followed by high dissipation. Alternatively, this also suggests
events of high enstrophy are more intermittent and last for shorter periods of time
than those of high dissipation. The degree of asymmetry in figure 1 can be quantified
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Figure 1. (a) Dissipation–enstrophy cross-correlation functions [ρεζ (τ )] at the six Reynolds
numbers (Rλ ≈ 40, 90, 140, 240, 390, 650) as recorded in table 1. (b) A blow up of data at
smaller |τ |. Arrows indicate trend of increasing Reynolds number (note there is some non-
monotonic behaviour at small |τ |).

N 64 128 256 512 1024 2048
Rλ 43 86 140 235 393 648
T+/TL 0.429 0.488 0.435 0.417 0.376 0.367
T−/TL 0.271 0.316 0.285 0.283 0.272 0.281
T+/T− 1.582 1.541 1.528 1.473 1.380 1.308
ρ(ε, ζ ) 0.311 0.402 0.449 0.493 0.537 0.571

Table 2. Ratio of areas under positive and negative time lags in the dissipation–enstrophy
cross-correlation, and single-time correlation (taken at τ = 0).

by comparing the areas under the curves for the ranges of τ < 0 versus τ > 0: i.e.
the time scales T+ =

∫ ∞
0

ρεζ (τ )dτ and T− =
∫ 0

−∞ ρεζ (τ ) dτ (table 2). It is clear that
at higher Reynolds number, the cross-correlation function shows an increase in the
degree of symmetry, which implies that events of high dissipation followed by high
enstrophy and high enstrophy followed by high dissipation along the particle trajectory
approach become more equally probable. Closer examination (figure 1b) also indicates
an increase in the cross-correlation coefficient (at τ =0). These observations are
consistent with suggestions from Eulerian work (Yeung, Donzis & Sreenivasan 2005)
of a tendency for the statistics of dissipation and enstrophy to become more similar
at higher Reynolds numbers.

Given the wide range of Reynolds numbers in our database, it is helpful to make
more detailed comparisons for data at the lowest and highest as well as an intermediate
Reynolds number. For the latter, we choose the 2563 data at Rλ ∼ 140, which is close
to the value of Rλ at which recognizable inertial-range features begin to appear in the
Eulerian energy spectrum (Yeung & Zhou 1997). Accordingly, in figure 2 we show
data from our 643, 2563 and 20483 simulations on cross-correlations for the three pairs
of variables formed from ε, ζ and ϕ. As the Reynolds number increases, these curves
drop significantly faster with increasing τ/TL whereas normalization by τη produces
a modest but imperfect degree of collapse. This is consistent with observations
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Figure 2. Cross-correlations ρεζ (τ ) (triangles), ρεϕ(τ ) (circles) and ρζϕ(τ ) (squares) at (i)

Rλ ≈ 40, (ii) 140 and (iii) 650 (grid resolutions 643, 2563, 20483 respectively) in our simulations.
Normalizing time scales are (a) TL and (b) τη .

from single-variable autocorrelations which are best considered as possessing two
characteristic time scales (Yeung et al. 2006b).

It can be seen that the cross-correlation between ζ and ϕ is the strongest among
the three quantities shown in figure 2, but differences become small at high Reynolds
number as the cross-correlations start to fall more rapidly with τ/TL (but less rapidly
with respect to τη). These features can be explained in part by using the identity
ϕ =(ε + ζ )/2 to obtain the relations

ρεϕ(τ ) =
1

2

[
σε

σϕ

ρε(τ ) +
σζ

σϕ

ρεζ (τ )

]
, (3.1)

ρζϕ(τ ) =
1

2

[
σζ

σϕ

ρζ (τ ) +
σε

σϕ

ρεζ (−τ )

]
, (3.2)

where ρε(τ ) and ρζ (τ ) are the dissipation and enstrophy autocorrelations. Because
(except perhaps at very high Reynolds numbers) enstrophy has a larger variance and
a more persistent autocorrelation, the first term in (3.2) makes ρζϕ(τ ) larger than
ρεϕ(τ ), as observed. For τ > 0, this effect is partly compensated by the second term in
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Figure 3. Lagrangian velocity autocorrelations conditioned on different values of dissipation,
enstrophy and pseudo-dissipation, at (a) Rλ approximately 650 and (b) 40. Arrows indicate
increasing values of conditioning variables (Z = ε, ζ or ϕ) corresponding to (ln(Z) − µ(ln(Z))/
σln(Z) = {−2.054, −0.994, 0, 0.994, 2.054}. The unconditional autocorrelation (dashed curve) is
included for comparison.

(3.1) since the dissipation–enstrophy cross-correlation is (as seen in figure 1) stronger
for τ > 0 than τ < 0. The cross-correlation between ζ and ϕ is also nearly symmetric,
which is due to the dominance of the first term in (3.2).

4. Conditional velocity autocorrelations and local coordinate axes
The autocorrelations of Lagrangian velocity conditioned upon dissipation,

enstrophy and pseudo-dissipation provide a direct measure of how local relative
motion in the flow affects fluid particle motion. Results at the lowest and highest
Reynolds numbers from our simulations are presented in figure 3. As in the Eulerian
paper by Yeung et al. (2006a), because of observed approximate log-normality
(especially for pseudo-dissipation) we have chosen conditional sampling intervals
based on the standardized logarithms of ε, ζ and ϕ. In particular, for each choice of
conditioning variable Z = ε, ζ or ϕ, we have plotted data corresponding to ln(Z) at
its mean value (µZ), and approximately ±1 and ±2 standard deviations (σln Z) from
the mean.

The general trend, especially at the higher Reynolds number (figure 3a), is clearly
that velocities of fluid particles experiencing large velocity gradients in the flow tend
to decorrelate more rapidly. The conditional autocorrelation at intermediate values of
ε, ζ or ϕ is closest to the unconditional autocorrelation (dashed curves) while
Reynolds-number dependence seems to be the strongest for ζ as the conditioning



408 P. K. Yeung, S. B. Pope, E. A. Kurth and A. G. Lamorgese

1.0

0.8

0.6

0.4

0.2

0

0 1 2 3
τ/TL/�

�

Figure 4. Conditional velocity autocorrelation given pseudo-dissipation at Rλ ≈ 650 (same
data as figure 3a(iii)), with time lag normalized by conditional integral time scales. The
exponential approximation exp(−τ/TL|ϕ) is shown as a dashed curve.

variable. This is consistent with the Eulerian results of Yeung et al. (2006a, figures 7–9
therein) showing that the conditional acceleration variance increases systematically
with the conditioning values of dissipation, enstrophy and pseudo-dissipation. The
dependence on the conditioning variable is expected to persist in time only as long
as the memory of the initial value of ε, ζ or ϕ is sustained. For τ/TL beyond
approximately 3, all of these conditional autocorrelations become nearly zero as the
conditioning dependence also trivially vanishes. This result also suggests that although
our largest (20483) simulation is also the shortest at about 6 TL, it is still sufficient
for the present purposes.

From the perspective of stochastic modelling at high Reynolds number based on the
pseudo-dissipation (see discussion in § 1), it is useful to know whether the different
curves in figure 3(a)(iii) can be ‘collapsed’ into a single form by some alternative
scaling on the time-lag axis. Figure 4 provides such a test, in terms of the integral
time scale of each conditional autocorrelation. However, it is clear that at small time
lags, these curves have a significant difference in shape, which is not removed by the
use of a conditional integral time scale.

From a physical perspective, in figure 3(b) it is the low-Reynolds-number result,
especially for conditioning on enstrophy, that seems to be more intriguing. At low ζ the
sensitivity to ζ is very weak, which is consistent with conditional acceleration variances
being almost independent of both dissipation and enstrophy in the corresponding
data range at low Reynolds numbers (see Yeung et al. 2006a, figures 7 and 8 therein).
In contrast, at high ζ the conditional dependence is very strong, and the conditional
autocorrelation given very large ζ appears to be nearly constant (at about 0.27) for
about half a TL before dropping steadily again with further increase of time lag.

To understand the behaviour noted above it is helpful to study the statistics of
velocity components in a local coordinate system evolving with the vorticity vector
at each time step, as described in § 2. Table 3 shows a comparison of the variances
of velocity and acceleration components projected onto axes parallel (u‖, a‖) and
perpendicular (u⊥, a⊥) to the vorticity, with those in fixed Cartesian axes (denoted



Lagrangian conditional statistics 409

N 64 128 256 512 1024 2048
Rλ 43 86 140 235 393 648
〈u2

‖〉/〈u2〉 1.13 1.10 1.08 1.05 1.03 1.02

〈u2
⊥〉/〈u2〉 0.94 0.95 0.96 0.97 0.98 0.99

〈(du‖/dt)2〉/〈a2〉 2.34 3.52 4.80 6.95 10.1 14.0
〈(du⊥/dt)2〉/〈a2〉 2.05 3.41 4.90 7.63 11.6 16.6
〈(a‖)

2〉/〈(du‖/dt)2〉 0.208 0.121 0.087 0.060 0.042 0.031
〈(uid(ωi/ω)/dt)2〉/〈(du‖/dt)2〉 0.703 0.835 0.886 0.926 0.950 0.965
〈a2

‖〉/〈a2〉 0.489 0.428 0.427 0.416 0.420 0.434

〈a2
⊥〉/〈a2〉 1.256 1.286 1.286 1.292 1.290 1.285

Table 3. Comparison of velocity and acceleration variances in local coordinate axes (based
on vorticity) with variances in a standard Cartesian system.

simply as u and a). These results are averaged over three components in fixed
axes and two for components in the plane perpendicular to the vorticity vector;
orthogonality of axes in both systems requires 3〈u2〉 = 〈u2

‖〉 + 2〈u2
⊥〉 (and similarly for

the acceleration). The data indicate that u‖ has a larger variance than both u and
u⊥, but the difference is small, especially at higher Reynolds numbers where the
alignment between velocity and vorticity dominated by large scales and small scales,
respectively, is expected to be statistically almost neutral. On the other hand, the ratio
of variances between a‖ and a⊥ is essentially independent of the Reynolds number. It
is possible that the larger variance of a⊥ is due to centripetal accelerations induced
in the direction normal to the fluid particle path as a result of vortical motions.

It should be noted that, because of contributions from changes in orientation of
the vorticity vector, the time derivatives of u‖ and u⊥ are different, and larger, than
accelerations in a fixed coordinate frame. In the case of u‖, we can write

du‖

dt
=

ωi

|ω|
dui

dt
+ ui

d

dt

(
ωi

|ω|

)
, (4.1)

where |ω| is the vorticity magnitude, and the first term is the same as a‖, i.e. the
acceleration projected in the direction of the vorticity. In table 3, we have included
relative contributions of the variances of each term in (4.1) to the variance of the total.
It is clear that the second term dominates, especially at higher Reynolds number,
accounting for over 96 % of the variances of du‖/dt at Rλ ≈ 650, with the contribution
from a‖ and a covariance term becoming insignificant. This observation is consistent
with the expectation that the vorticity vector undergoes rapid changes in orientation,
at time scales shorter than that for the velocity. The Reynolds number trend is also
even stronger for u⊥, where rotation of the axes p and q in the orthogonal plane
makes further contributions.

The unconditional autocorrelations of u, u‖ and u⊥ at different Reynolds numbers
are compared in figure 5. Rapid changes in time for u‖ and u⊥, as discussed above,
are expected to be reflected also in faster decorrelation of these velocity components.
Figure 5 shows that u‖ remains correlated longer than u⊥, which is consistent with
the idea that velocity along the axis of a vortex that maintains its orientation for a
finite time changes more slowly than components in the orthogonal plane.

Figure 5 also shows that, as the Reynolds number increases, the contrast among
autocorrelations of u, u‖ and u⊥ becomes greater since the vorticity vector evolves
on short time scales that decrease relative to TL. A negative ‘trough’ also begins to



410 P. K. Yeung, S. B. Pope, E. A. Kurth and A. G. Lamorgese

1.0
(a) (b) (c)

0.8

0.6

0.4

0.2

0

0 1 2 543 0 1 2 543 0 1 2 543

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

τ/TL τ/TL τ/TL

Figure 5. Comparison of autocorrelations of velocity component in fixed Cartesian coordinate
axes (�), and in local axes parallel (�) and perpendicular (�) to local vorticity vector, at
(a) Rλ ≈ 40, (b) 140 and (c) 650.

develop in the autocorrelation of u⊥, with increasing intensity and a zero crossing
at a time scale that also decreases relative to TL. This feature can be described as a
damped oscillation, which is consistent with rapid changes in direction of motions in
the plane perpendicular to the vorticity vector.

For a closer examination of the behaviour of u‖ and u⊥, we show their conditional
autocorrelations given the enstrophy in figure 6 at low, intermediate and high Reynolds
numbers in our simulations. Because these projected velocity components are defined
in a coordinate system moving with the vorticity, the conditional dependence is
expected to have a time scale comparable to the integral time scale of enstrophy.
Accordingly, we have normalized the time lags in figure 6 by the empirical choice√

TLτη suggested by the results of Yeung et al. (2006b). It is seen that the conditional
autocorrelations indeed fall to zero at several times of

√
TLτη regardless of the

conditioning value. Two remarkable observations can be made: (i) in contrast to other
results, the conditional autocorrelation of u‖ lasts the longest when the conditioning
enstrophy is the largest; and (ii) the conditional autocorrelation of u⊥ shows the
‘damped oscillation’ type of behaviour seen in figure 5, especially for higher Reynolds
number and higher conditioning enstrophy. Both of these features are consistent with
the scenario of intense vortices where the axial velocity component changes slowly,
but the transverse components evolve rapidly on a time scale that decreases with the
local enstrophy used as the conditioning value. The depths of the negative troughs
seen in results for u⊥ also reflect greater intensity of local vorticity with increase in
Reynolds number or conditioning enstrophy.

Although we observed in figure 4 that the autocorrelation of velocity (in fixed
coordinate axes) conditioned on pseudo-dissipation does not scale well with a
conditional integral time scale, because of the different physics, a similar concept
may be more successful for velocity in local coordinate axes. Indeed, in figure 7 we
observe near-perfect universality for u‖, especially at high Reynolds number, except
for the lowest value of the conditioning enstrophy. However, such a ‘collapse’ is clearly
not possible for the autocorrelations of u⊥ whose shapes (as seen in figure 6b) are
very sensitive to the conditioning enstrophy.

In the neighbourhood of a region of high enstrophy, velocity components measured
along a set of fixed coordinate axes can be expected to have a behaviour intermediate
between the contrasting parallel and perpendicular components presented in figure 6.
Specifically, in the Rλ ≈ 40 data, the combination of conditional autocorrelation of u‖
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Figure 6. Conditional autocorrelations given the enstrophy at (i) Rλ ≈ 40, (ii) 140 and
(iii) 650, for (a) u‖ and (b) u⊥ in local axes evolving with the vorticity vector. Lines A–E
are for increasing values of the conditional enstrophy, at the same levels as those used in
figure 3.

1.0

0.8

0.6

0.4

0.2

0

0 2 4 6

1.0(a) (b) (c)

0.8

0.6

0.4

0.2

0

0 2 4 6

1.0

0.8

0.6

0.4

0.2

0

0 2 4 6
s/T || |ζ s/T || |ζ s/T || |ζ

Figure 7. Conditional autocorrelations given the enstrophy at (a) Rλ ≈ 40, (b) 140 and (c) 650,
for u‖ (same data as in figure 6a) with time lag normalized by conditional integral time scale
(T‖|ζ ). Dashed curve (partly hidden) indicates the exponential approximation exp(−τ/T‖|ζ ).

decreasing but that of u⊥ increasing with time lag τ in the range between one and two√
TLτη is consistent with the observation of conditional autocorrelation levelling out

in the range of τ between 0.5 and 1 TL (figure 3). At higher Reynolds numbers, the



412 P. K. Yeung, S. B. Pope, E. A. Kurth and A. G. Lamorgese

N 64 128 256 512 1024 2048
Rλ 43 86 140 235 393 648

〈A2
N 〉/〈A2

P 〉 1.71 1.67 1.52 1.42 1.32 1.26

Table 4. Variances of parallel and centripetal acceleration components.

damped-oscillation behaviour of the u⊥ conditional autocorrelation is still present,
but it occurs at time lags that are very short compared to TL, i.e. during the range
of τ where autocorrelations drop the fastest. As a result, only a small and barely
perceptible kink appears in the curve for highest conditioning enstrophy at Rλ ≈ 650
in figure 3.

In the discussions above, the range of time lags where the damped-oscillation effects
are significant can be taken to be a measure of the typical time interval that a fluid
particle may spend in regions of high vorticity. In other words, the ‘blip’ in the velocity
autocorrelation given high enstrophy (seen in part of figure 3) can be interpreted as a
signature of vortex-trapping effects studied by other authors (Biferale et al. 2005).
However, at higher Reynolds numbers, vorticity time scales become very short and
tend to prevent the orientation of a vortex from being maintained for a substantial
period of time. Our results are consistent with other sources of DNS data (Biferale &
Toschi 2006; Toschi et al. 2005) which also showed that vortex trapping may affect
Lagrangian statistics on a time scale of a few Kolmogorov time scales.

Additional information on vortex-trapping may also be obtained by considering the
centripetal acceleration perpendicular to the velocity vector. We define AP = (u · a)/|u|
(which represents changes in velocity magnitude) and a pair of orthogonal components
(A(1)

N , A
(2)
N ) in the plane perpendicular to u (which represent changes in direction).

Strictly circular motion as in the orthogonal plane of a well-defined line vortex
would be reflected in a purely centripetal acceleration, with AP = 0 and the vectors
u and a being orthogonal to each other. For stationary isotropic turbulence all of
AP , A

(1)
N and A

(2)
N have zero mean, whereas their variances are expected to satisfy

〈A2
P 〉 +2〈A2

N〉 = 〈a · a〉, where 〈A2
N〉 denotes the variances of both A

(1)
N and A

(2)
N . In our

simulations, we find that (table 4) while the importance of centripetal acceleration
is indicated by the ratio of variances 〈A2

N〉/〈A2
P 〉 being larger than unity, this ratio

steadily decreases with Reynolds number. The decrease of this ratio is consistent
with a shorter duration of vortex trapping effects because this means there are fewer
samples of large AN and small AP over a finite period of time.

We also show, in figure 8, the PDF of the cosine of the angle (θ) between the vectors
u and a. A positive value of cos θ indicates acute alignment of the vectors u and a
and tends to make |u| increase, whereas a negative cos θ indicates obtuse alignment
which makes |u| decrease. Since the observed |u| is bounded in DNS, negative values
of cos θ are more likely, which is reflected by a slight deviation from symmetry of
the PDF in figure 8. Although this PDF has a peak at cos θ =0, it tends to be more
spread out at high Reynolds number. However, the difference between data at the two
highest Reynolds numbers in this figure is small, which suggests the possibility that
the statistics of vectorial alignment between u and a could approach an asymptotic
state in the high-Reynolds-number limit.

5. Acceleration, dissipation, enstrophy and pseudo-dissipation
Information on Lagrangian conditional statistics of the acceleration is crucial for

our current efforts in stochastic modelling (Lamorgese et al. 2007). To illustrate the
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Figure 8. PDF of cosine of alignment angle between velocity and acceleration vectors. Lines
A–F represent data in ascending order of six different Reynolds numbers from table 1.

connection between acceleration and the conditioning variables ε, ζ and ϕ we show
in figure 9 cross-correlation functions between acceleration magnitude (at time t) and
dissipation, enstrophy or pseudo-dissipation (at time t + τ ), at low, intermediate and
high Reynolds numbers. Because large local velocity gradients tend to cause large
acceleration, these cross-correlations are positive, and substantial, with the correlation
coefficient (at τ = 0) increasing with Reynolds number, as expected. These cross-
correlations become narrower with respect to TL but wider with respect to τη, which
indicate again the physical process involved has a time scale intermediate between TL

and τη. The cross-correlation of acceleration magnitude with pseudo-dissipation is a
weighted combination of those with dissipation or enstrophy (Yeung & Pope 1989),
and (since enstrophy has a larger variance) is generally closer to the latter. It can
be seen that these curves are all asymmetric, but less so at higher Reynolds number.
A positive τ may be interpreted as describing the acceleration time history of fluid
particles entering a zone of high strain rate (i.e. high ε) or high vorticity (i.e. high ζ ).
At low Reynolds numbers, the observation of ρ|a|ζ (τ ) being greater than ρ|a|ε(τ )
suggests that fluid particles are drawn into zones of high vorticity more strongly than
into zones of high strain rate. The resulting large acceleration is also sustained longer.
On the other hand, except for a slight secondary peak in ρ|a|ε(τ ) at low Reynolds
number (figures 3a(i) and 3b(i)), for negative τ the three pairs of cross-correlation
functions shown are similar. The weaker correlation seen for negative τ suggests
that the exit of fluid particles from regions of intense velocity gradients is relatively
gradual and not accompanied by large acceleration for a sustained period of time.

The Reynolds-number dependence of the unconditional acceleration autocorrela-
tion (averaged over three coordinate components) is shown in figure 10, with time
lag in Kolmogorov variables. In stationary turbulence, the acceleration has a zero
integral time scale, which implies mutual cancellation between positive values at small
τ and negative values over a more extended range. The property of a zero-crossing
time scale being about 2.2 τη time scales inferred from lower-Reynolds-number data
(Yeung & Pope 1989) remains almost universal, although an increase in the Reynolds
number does lead to a more rapid drop within the first two Kolmogorov time scales.
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Qualitatively similar results were reported in experiments by Voth et al. (1998) in a
different flow geometry although a later study (Voth et al. 2002) suggested a different
picture.

Conditional autocorrelations of the acceleration are shown in figure 11, at the
lowest and highest Reynolds numbers simulated, with time lag also in Kolmogorov
variables. This autocorrelation function is not subject to the stationarity constraint of
zero area under the curve that applies to the unconditional quantity. The general trend
is clearly that the acceleration becomes decorrelated earlier with increasing values of
the conditioning variables ε, ζ and ϕ, which all represent more intense local velocity
gradients in the flow. At high Reynolds numbers, the conditioning dependences on
ε and ϕ are stronger than that on ζ , which is consistent with results for the Eulerian
conditional acceleration variance (see Yeung et al. 2006a, figure 10 therein). For the
enstrophy at low Reynolds number, there is a non-trivial conditional dependence
on ζ only for ζ at relatively large values (curves D and E, in figure 11b(ii)). It can
also be seen that the unconditional acceleration autocorrelation (dashed curves) is
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closest to the conditional autocorrelation corresponding to moderately large ε, ζ or
ϕ (line D), in contrast to velocity data in figure 3 which showed the best agreement
for intermediate values of these conditioning variables. In other words, events of
large ε, ζ or ϕ dominate the unconditional acceleration autocorrelation, which can
be expected from the strong increase of conditional acceleration variance under such
conditions (Yeung et al. 2006a).

Because figure 11 indicates accelerations of fluid particles in zones of different
dissipation or enstrophy evolves on different time scales, it is natural to ask if a local
Kolmogorov time scale might be more appropriate for the normalizations. In parti-
cular, instead of using τη =

√
ν/〈ε〉, we can ask if a partial ‘collapse’ of curves

can be obtained by using τ̂η =

√
ν/Ẑ where Ẑ is the conditioning value of Z being

ε, ζ or ϕ specific for each curve. However, additional plots (not shown) indicate that
this alternative normalization leads to an ‘over-correction’: i.e. curves plotted versus
τ/τ̂η follow a trend in Z opposite to that seen in figure 11.

6. Velocity–acceleration joint statistics
In this section, we further characterize the behaviour of velocity and acceleration as

a joint stochastic process which is a key component of a new Lagrangian stochastic
model described in Lamorgese et al. (2007). The simplest joint statistic to consider
is the (unconditional) velocity–acceleration cross-correlation function, ρua(τ ) ≡
〈u(t)a(t + τ )〉/(σuσa) where σu and σa are root mean square (r.m.s) velocity and accel-
eration fluctuations, and averaging over coordinate components is implicit in isotropic
turbulence. In stationary turbulence this is an odd function passing through the origin,
and (Pope 2000) related to the Lagrangian velocity autocorrelation ρL(τ ), as

ρua(τ ) =
σu

σa

dρL(τ )

dτ
. (6.1)
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Figure 11. Lagrangian acceleration autocorrelations conditioned on different values of
dissipation, enstrophy and pseudo-dissipation (same as used in figure 3), from (a) 20483

simulation at Rλ ≈ 650 and (b) 643 simulation at Rλ ≈ 40. Time lag is normalized by Kolmogorov
time scale (τη). Unconditional autocorrelations (dashed curve) are included for comparison.

At small τ (∼ O(τη)), substitution of the parabolic form ρL(τ ) ≈ 1− (σaτ/σu)
2/2 gives

ρua(τ ) ≈ −σa

σu

τ, (6.2)

i.e. a linear regime with negative slope. At large, τ (O(TL) or larger), the exponential
approximation ρL(τ ) ≈ exp(−|τ |/TL) gives

ρua(τ ) ≈ − sgn(τ )
σu

σaTL

exp(−|τ |/TL), (6.3)

which increases with positive τ , but decreases with negative τ . In these expressions,
the factor σu/σa defines a time scale whose Reynolds-number dependence can be
be estimated using standard scaling results such as 〈ε〉 ≈ 15νσ 2

u /λ2 (where λ is the
Taylor sale), and 〈ε〉 ∼ 0.4 σ 3

u /L1 (Sreenivasan 1998). With TL ∼ 0.8 L1/σu in our
DNS (Yeung 2001) we obtain

σu

σaTL

≈ 6.15 (a0Rλ)
−1/2, (6.4)

with a0 being the Kolmogorov-scaled acceleration variance (which increases at least
weakly with Reynolds number (Sawford et al. 2003; Yeung et al. 2006a)). At the
same time, we have

σu

σaτη

=
(Rλ/a0)

1/2

(15)1/4
, (6.5)

thus showing that σu/σa gives an intermediate time scale between TL and τη.
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Figure 12. Unconditional Lagrangian velocity–acceleration autocorrelations at different
Reynolds numbers (lines A–F, for Rλ ≈ 40, 90, 140, 240, 390, 650), with time lag under
two different normalizations.

Figure 12 shows results for ρua(τ ) at different Reynolds numbers. It can be seen that
ρua(τ ) behaves (as expected) as an odd function passing through the origin, with a
short linear segment in accordance with (6.2), ultimately followed by decay in a form
consistent with (6.3). When plotted versus τ/TL, an increase of Reynolds number
leads to a steeper but shorter linear segment; this can be explained by the slope of
the curve being the inverse of (6.4) and noting that τη decreases versus TL so that
the exponential decay (6.3) becomes dominant at smaller τ/TL. Incidentally, since the
time-scale ratio TL/τη varies linearly with Rλ, the Rλ

1/2 scaling in (6.4) suggests that

a universal collapse of the linear segment is possible if τ is normalized by
√

TLτη

instead. This is verified in figure 12(b).
Conditional cross-correlations are shown in figure 13, between u+(t) and a+(t + τ )

(upper half) and between a+(t) and u+(t + τ ) (lower half), and for the highest and
lowest Reynolds numbers in our simulations. Unlike their unconditional counterparts,
conditional cross-correlations are not required to be odd functions, and (in the
notation suggested by (2.4)) functions ρua(τ |Z) and ρau(τ |Z) are not necessarily equal
to the negative of each other. However, it is clear that deviations from antisymmetry
(which can be quantified by decomposing these cross-correlations into even and odd
parts) are weaker at higher Reynolds number. In other words, such deviations can also
be interpreted as low-Reynolds-number effects. Despite the close connection between
acceleration and the Kolmogorov time scale, non-zero values of these conditional
cross-correlations appear to extend up to time lag of three Lagrangian velocity
integral time scales.

Comparison of figure 13 with figure 12 shows that at low values of conditioning
ε, ζ or ϕ, the correlation between particle velocity and acceleration tends to persist
longer and may reach larger peak values (in magnitude) than in the unconditional
cross-correlation. Conversely, it is also clear that velocity and acceleration at different
times become uncorrelated faster when under the influence of large ε, ζ or ϕ. This can
in part be understood via the effect of a large acceleration which implies rapid changes
of the velocity. The greatest effect on the shapes of the curves in figure 13 is that of
conditioning enstrophy at low Reynolds number. Similarly to figure 11, the conditional
dependence involved is largely restricted to large enstrophy (lines D and E). It may
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Figure 13. Lagrangian cross-correlations between velocity and acceleration conditioned on
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be recognized the conditional cross-correlations shown here are at a level of detail
beyond what most current stochastic models (to our knowledge) can predict. Neverthe-
less, the data presented will be potentially useful for future developments in modelling.

7. Conclusions and discussion
In this paper, we have used direct numerical simulation (DNS) data in forced,

stationary isotropic turbulence, at Taylor-scale Reynolds numbers in the range 40–650
and grid resolution 643 to 20483, to study the effects of spatial intermittency on
Lagrangian fluid particle motion including the properties of velocity and acceleration.
A primary emphasis is on the behaviour of Lagrangian statistics conditioned on
fluctuations of dissipation (ε), enstrophy (ζ ) and pseudo-dissipation (ϕ), as extensions
of studies of Eulerian conditional statistics of the acceleration (Yeung et al. 2006a) and
the Reynolds-number dependence of basic Lagrangian quantities (Yeung et al. 2006b).
Besides advancing physical understanding, this work also provides data required to
test new developments in stochastic modelling incorporating effects of intermittency
(Reynolds et al. 2005; Lamorgese et al. 2007). The Lagrangian conditional statistics
presented here are new and involve a degree of detail currently possible only in DNS.

The Lagrangian cross-correlation (in time) between dissipation and enstrophy has
an asymmetric form which suggests there is a preferential tendency for fluid particles
to experience high dissipation followed by high enstrophy instead of the converse,
although this effect becomes weaker at high Reynolds numbers. Conditional auto-
correlations of velocity given ε, ζ or ϕ, show clearly that (as expected) the velocities
of fluid particles moving in regions of large velocity gradients tend to decorrelate
rapidly, in accordance with a large conditional acceleration variance (Yeung et al.
2006a). However, at low Reynolds number, the conditional autocorrelation given
high enstrophy has some distinctive features (figure 3b(ii)) which we have examined
closely by considering velocity components u‖ and u⊥ in a system of local coordinate
axes parallel and perpendicular to the vorticity vector. Both u‖ and u⊥ evolve and
decorrelate rapidly as a result of rapid changes in the vorticity vector orientation,
with the autocorrelation of the latter taking on (especially at high Reynolds number)
a negative trough typical of systems with damped oscillations. Results for conditional
and unconditional autocorrelations of u‖ and u⊥ suggest that the ‘blip’ in figure 3 is a
signature of vortex-trapping effects which other authors (e.g. Biferale et al. 2005) have
reported to have a time scale of several Kolmogorov time scales. Additional informa-
tion is also presented in terms of centripetal acceleration projected along the direction
of the velocity vector. At higher Reynolds number, since the vorticity then evolves on
shorter time scales, a strong vortex in the flow is probably not well sustained in time.

Results on the cross-correlations between acceleration magnitude (|a|) and the
variables ε, ζ and ϕ suggest that fluid particles are drawn into zones of high vorticity
with a larger acceleration compared with zones of high strain rate, although the
contrast becomes weaker at high Reynolds number. At high Reynolds numbers,
conditional acceleration autocorrelations show a very strong dependence on the
conditioning variables, especially for dissipation and pseudo-dissipation (figure 11a).
Although the conditional acceleration evolves on a time scale that decreases with the
intensity of local velocity gradients, normalization by a local Kolmogorov time scale
based on the conditioning variables does not produce a close ‘collapse’ of the data.

For a further characterization of the conditional joint distribution of velocity
and acceleration, we have also presented cross-correlations between the velocity and
acceleration. The unconditional cross-correlation is shown to be characterized by a
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short linear segment followed by an exponential decay related to the shape of the
velocity autocorrelation. The conditional cross-correlation departs from antisymmetry
primarily at low Reynolds number, where high conditioning enstrophy again leads to
qualitatively different results.

In summary, we have presented here new results from numerical simulations up to
20483 grid resolution on the conditional statistics of Lagrangian fluid-particle motion,
where several features associated with low Reynolds number have been identified.
While contrasts between conditioning on dissipation and on enstrophy give useful
information on the physics of intermittency effects, pseudo-dissipation is (as suggested
by Yeung et al. 2006a) the best conditioning variable for use in modelling. The body
of data presented here, as well as the underlying simulation database, is expected to be
useful in the development of Lagrangian stochastic models, such as the conditionally
cubic Gaussian model for velocity, acceleration and pseudo-dissipation, developed by
Lamorgese et al. (2007).

We gratefully knowledge support from the National Science Foundation (NSF),
via Grants CTS-0328314 (P.K.Y.) and CTS-0328329 (S.B.P.). The computations were
made possible by large resource allocations at Pittsburgh Supercomputing Center
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(SDSC), which are both supported by NSF.
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